Chapter 24 Simple Linear Regression Analysis

- I. Simple regression analysis defines the mathematical relationship between 2 variables.
 - A. A scatter diagram depicts the relationship between the independent variable (advertising) on the x-axis and a dependent variable (sales) on the y-axis (see graph).
 - B. A line through the scatter plot can be used to mathematically define this relationship.
 - 1. The line can be estimated using the eyeball method by drawing a line with a ruler that divides the data in half.
 - 2. A regression equation may be used to more exactly define the relationship between two variables.

Linda's Video Showcase Advertising Expenditures and Sales Revenue				
Advertising Expenditures (X) (000)	Sales Dollars (Y) (000)	x ²	XY	Y ²
5	50	25	250	2,500
2	25	4	50	625
7	80	49	560	6,400
6	50	36	300	2,500
10	90	100	900	8,100
4	30	16	120	900
6	60	36	360	3,600
5	60	25	300	3,600
3	40	9	120	1,600
_8	_80	_64	<u>640</u>	6,400
56	565	364	3,600	36,225

- II. Determining a regression equation using the method of least squares
 - A. Many different lines can be drawn through a scatter plot using a ruler.
 - B. The method of least squares gives more consistent results.
 - C. This technique results in a straight line that minimizes the sum of the squared vertical deviations between the resulting line and the individual data. These deviations may be thought of as error.
 - D. This is the general form of the regression equation.

$\hat{y}_{\cdot x} = a + bx$ where	$\hat{y}_{.x}$ is the estimated value of y based upon a given value for x. The period next to \hat{y} is read "given" and this expression is read "y estimated given x."
	a is the y-intercept (where the line crosses the y-axis). b is the slope of the line. It equals $\Delta y \div \Delta x$.

E. Determining the regression equation to 3 significant digits.

$$b = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2}$$

$$= \frac{10(3,600) - (56)(565)}{10(364) - (56)^2}$$

$$= \frac{4,360}{504} = 8.6507936$$

$$a = \overline{Y} - b\overline{x}$$

$$a = \frac{\sum Y}{n} - b\frac{\sum X}{n}$$

$$= \frac{565}{10} - 8.6507936(\frac{56}{10})$$

$$= 8.055556$$

$$\hat{y}_{\cdot x} = a + bx$$

 $\hat{y}_{\cdot x} = 8.06 + 8.65x$

F. The example to the right uses the regression equation to calculate estimated monthly sales when advertising expenditures are \$9,000.

$$\hat{y}_{.x} = 8.06 + 8.65x$$
 $\hat{y}_{.9} = 8.06 + 8.65(9)$
 $\hat{y}_{.9} = 8.06 + 77.85 = 85.91 \text{ or } $85,910$